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Abstract

Using a structural model of default, I derive rating characteristics if ratings are meant to

look �through the cycle� as opposed to being based on the borrowers� current condition.
The through-the-cycle method, which is employed by most rating agencies, requires a separa-

tion of permanent and cyclical components of default risk. In a time series setting, this can be

done through the Kalman filter. The analysis shows that several empirical irregularities of

agency ratings could be the consequence of such a rating method. The stability of through-

the-cycle ratings is relatively high, while their default prediction power is low. Though not pre-

dictable in the usual sense, rating changes exhibit properties that call for a reconsideration of

the existing evidence.
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1. Introduction

Rating agencies such as Fitch, Moody�s or Standard & Poor�s play an important

role for the functioning of credit markets. Their ratings are used to price risky debt,
to compute economic and regulatory capital, or to calibrate internal ratings of banks

and other financial institutions (for the latter see Carey and Hrycay, 2001). When

using agency ratings for such purposes, two main requirements should be met.

The nature of a rating should be properly understood, i.e., it should be clear what

kind of information rating agencies intend to summarize. Secondly, ratings should
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efficiently aggregate this information. At present, both requirements do not seem to

be fulfilled.

As to informational efficiency, there is plenty of academic and anecdotal evidence

which suggests that agency ratings do not fully reflect available information. Altman

and Kao (1992) and Lando and Skødeberg (2002) document serial dependence in
rating changes, while Delianedis and Geske (1999) conclude that borrower funda-

mentals predict future rating changes. Other evidence which points to inefficiencies

is the high stability of agency ratings (Kealhofer et al., 1998), or the agencies� perfor-
mance in the Asian crises (IMF, 1999). 1

The peculiarities of the agencies� rating method, on the other hand, have received

little attention in the literature. It is commonplace to note that agency ratings are not

estimates of short-term default risk, but should rather be characterized as looking

through the cycle (cf. Basel Committee on Banking Supervision, 2000). Carey and
Hrycay (2001), however, are the first to study the nature and consequences of the

agencies� rating architecture. They examine problems that arise if the default history

of through-the-cycle ratings is used to map internal bank ratings into default prob-

abilities. Contrary to agency ratings, bank ratings are usually based on the actual de-

fault probability over a specific horizon. In the literature, such ratings are labeled

current-condition or point-in-time ratings. The category also comprises ratings based

on quantitative forecasts of bankruptcy. 2

In this context, the contribution of the present paper is twofold. I suggest a formal
model of the agencies� rating process that should be helpful whenever their ratings

are to be assessed, or used as an input to other models. As an application, I use

Monte Carlo simulations to examine the following question: do the empirical pecu-

liarities of agency ratings necessarily reflect informational inefficiencies, or could

they be inherent to the agencies� rating system?

The model builds on the structural analysis of credit risk introduced by Merton

(1974). Firms default if the value of their assets hits a default threshold which is re-

lated to their liabilities. The key variable for measuring default risk is distance to de-
fault, which is the standardized difference between the asset value and the

default threshold. Differentiating between through-the-cycle and current-condition

ratings is relevant when a borrower�s default risk exhibits cyclical behavior. I there-

fore consider a case in which asset values are subject to both permanent and tran-

sitory shocks. Through-the-cycle ratings respond to permanent shocks only,

current-condition ratings to both. More precisely, through-the-cycle ratings are as-

sumed to be based on the borrower�s distance to default in the event a stress scenario
occurs. The stress scenario is taken to be a transitory deviation from the normal con-
dition which occurs with a fixed probability chosen by the rating agency. In
1 Cf. also the following quotes from the financial press: ‘‘Wall Street fixed income analysts often observe

that their counterparts at rating agencies are, overly conservative’’ (Institutional Investor, September 1997,

p. 197) and ‘‘Ratings in Asia seem to lag rather than tell you any worthwhile information in advance’’

(Euromoney, January 1998, p. 51).
2 Cf. Shumway (2001) for a recent contribution to bankruptcy forecasting, and Crouhy et al. (2000) for

a description of the default rate estimates produced by the financial software firm KMV.
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the paper, the stress scenario is defined by assuming plausible values for the volatility

of transitory shocks, and the probability of the stress scenario�s occurrence. The lar-
ger the volatility of transitory shocks, the more adverse is the shock that is added

to the permanent distance to default in the construction of the stress scenario.

Thus, vulnerability to cycles affects the rating decision, whereas the current position
in the cycle does not. Current-condition ratings are based on the current distance

to default, which incorporates the permanent asset value plus cyclical deviations;

they take into account that cyclical deviations tend to decline over the rating hori-

zon.

Under both rating architectures, rating analysts need to separate permanent and

cyclical components. Typically, the two components are not directly observable, but

have to be estimated. In the framework of the paper, the optimal estimation proce-

dure is to apply a Kalman filter, 3 which produces a least squares decomposition of
the observed variable into permanent and transitory components. The paper does

not distinguish between macroeconomic, industry-specific, or idiosyncratic shocks

because the agencies� publications do not indicate that rating decisions depend on

the origin of a shock. 4

In such a setting, rating through the cycle has several implications which mirror

empirical findings. Through-the-cycle ratings are relatively stable, and have a low de-

fault prediction power; rating changes are correlated with past rating changes pro-

vided contemporaneous information is controlled for. Further predictions arise if
the degree of cyclicality is not known to the rating analysts. If raters overestimate

the magnitude of transitory shocks, for example, rating changes can exhibit positive

autocorrelation without conditioning on contemporaneous information. Finally,

new information on the nature of shocks may cause drastic rating changes which

seem unwarranted based on the information relevant for identifying current-condi-

tion default risk.

The findings thus suggest that the empirical evidence on ratings has to be inter-

preted with care. Apparent violations of informational efficiency could well result
from the agencies� rating method. It is important to evaluate ratings against an ap-

propriate benchmark, and to take their particularities into account when using them

as inputs to other models. Depending on the purpose, agency ratings and current-

condition ratings may not be interchangeable.

Among the related literature is Carey and Hrycay (2001), whose paper contains an

empirical investigation into rating dynamics. They find that agency ratings exhibit

less cyclical variation and are more stable than current-condition ratings, which is

consistent with agencies following the through-the-cycle approach. L€offler (2002) ex-
amines the consequences of the agencies� tendency to reduce rating volatility by tak-

ing a rating action only when it is unlikely to be reversed shortly afterwards. Such a
3 Cf. Hamilton (1994) for a detailed description of the Kalman filter.
4 This does not mean that correlations across borrowers should be ignored in practice. Exploiting

correlations can increase the accuracy with which permanent and transitory components of default risk are

separated. In the paper, shocks are assumed to be independent across borrowers, so that separate

estimation is efficient.
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policy affects rating dynamics in a similar way as following a through-the-cycle

approach. It appears that rating through-the-cycle can have stronger effects on rating

stability, whereas avoidance of rating reversals can explain predictability of rating

changes unaccounted-for by the through-the-cycle approach. Even though their ef-

fects are similar, the two rating policies are conceptually different. Avoiding rating
reversals by suppressing rating changes works like a filter that leads to a loss of in-

formation. Through-the-cycle ratings, too, neglect information, but only in order to

convey other information not contained in current-condition ratings.

Krahnen and Weber (2001) propose general standards for good rating practice,

focusing on current-condition ratings. My analysis of cyclical components in default

risk partly builds on the literature on mean reversion in asset prices (Fama and

French, 1988; Poterba and Summers, 1988). The consequences of mean-reverting de-

fault risk for the prices of risky debt are studied in Collin-Dufresne and Goldstein
(2001); Dangl and Zechner (2001) investigate dynamic capital structure choice and

its impact on credit spreads and default risk. Recent papers on the fundamental de-

terminants of ratings and their informational content are Blume et al. (1998) and

Ederington and Goh (1998), respectively.

The paper is organized as follows. Section 2 formalizes the through-the-cycle

method. Section 3 explores the ensuing rating dynamics in a Monte Carlo frame-

work, and sets them against empirical evidence on agency ratings. Section 4 con-

cludes.
2. Formalizing the rating process

2.1. Distance to default

I examine differences between rating methodologies in a world where ratings re-

flect an issuer�s distance to default within a Merton (1974) type model of default. De-
fault is triggered if the value of a firm�s assets falls below a threshold which is related

to the firm�s liabilities. The distance to default is the standardized difference between

a firm�s asset value and the default threshold. The Merton model can also be adapted

to sovereigns, whose assets are largely made up by the capacity to levy taxes. As will

become clear in the course of the paper, the choice of this framework is not critical.

In essence, the analysis requires only that ratings are based on some notion of credit

quality, and that credit quality is subject to cyclical shocks.

Since the exact modeling of the default process does not seem relevant for the pur-
pose of this paper, I use a simple model of default. A borrower�s logarithmic asset
value xt follows a random process whose increments have mean zero and constant

variance. Default occurs if the asset value drops below an exogenous default thresh-

old, whose logarithm is denoted by d. This threshold is taken to be constant.

In the Merton (1974) model, asset values follow a random walk. In consequence,

the asset value process does not contain cycles, and it is not meaningful to apply a

through-the-cycle perspective. To introduce cyclicality, I model asset values as the

sum of a random walk x� and an autoregressive process of order one y:
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xt ¼ x�t þ yt; x�t ¼ x�t�1 þ et; yt ¼ qyt�1 þ ut; et � Nð0; r2
e Þ; ut � Nð0; r2

uÞ;
ð1Þ
with 0 < q < 1 and Covðet; utÞ ¼ 0. Whereas the innovations et are permanent, the ut
are not. They introduce a mean-reverting component into the asset value. Such

processes have been used, for example, to describe the behavior of equity returns

because equity prices have been found to be subject to both permanent and transi-

tory shocks (see, for example, Campbell et al., 1997). The evidence on negative
autocorrelation in equity returns gives one justification why asset values and thus,

with a constant default threshold, the distance to default should be mean-reverting.

Another possible reason is that borrowers target a certain credit quality level; survey

evidence on such behavior is presented in Graham and Harvey (2001). Even if asset

values follow a pure random walk, managing credit risk through changes in leverage

or other means can introduce mean reversion into the default risk process.

A convenient way of summarizing the extent of cyclicality is the variance ratio,

defined as the unconditional T -period variance divided by T times the one-period
variance. 5 To derive the variance ratio for the process (1), we need the unconditional

variance of the T -period asset value change, which is given by
VARðxt � xt�T Þ ¼ T VARðetÞ þ VARðytÞ þ VARðyt�T Þ � 2COVðyt; yt�T Þ

¼ Tr2
e þ 2

r2
u

1� q2
� 2qT r2

u

1� q2
: ð2Þ
For a random walk, the variance ratio is unity. With a cyclical process like (1),

short term fluctuations tend to be corrected in later periods, which makes the vari-

ance ratio smaller than one. The conditional T -period variances of changes in x and y
are, by repeated substitution, given by Tr2

e þ
PT�1

t¼0 q2tr2
u and

PT�1
t¼0 q2tr2

u, respec-

tively. In the paper, the annual conditional volatility will be denoted by rðxÞ and
rðyÞ, respectively. Periodicity is set equal to one month.

Following industry practice, current-condition ratings are assumed to be based on

the one-year probability of default. Due to mean reversion, the current asset value xt
is not sufficient to characterize the default probability. The conditional expected re-

turn on xt varies with the transitory component yt; over one year it is equal to

�ð1� q12Þyt. I thus suggest the following measure for the current-condition distance

to default CC DTDt, which is based on the expected one year ahead asset value:
CC DTDt ¼
E½xtþ12	 � d

rðxÞ ¼ xt � ð1� q12Þyt � d
rðxÞ : ð3Þ
In a world where, as in Merton (1974), default can occur only at the end of hori-

zon, ranking borrowers according to (3) is equivalent to ranking them according to

their default probabilities. (In this case, the one-year default probabilities would be
given by U½�CC DTDt	, with U½
	 denoting the standard normal cumulative distri-

bution function.) To make the simulations of Section 3 more realistic, I will assume
. Campbell et al. (1997) for a discussion of variance ratios.
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that default can occur also during the one-year horizon. If the asset value exhibits

mean reversion, the relationship between distance to default and default probability

is then no longer straightforward. 6 However, the measure defined in (3) will provide

a good approximation to the true default risk, an assertion that will be underpinned

by the results presented in Section 3. Since it will be shown that the current-condition
distance to default provides a better measure of default risk than the through-the-

cycle concept, any errors in approximating the true default risk through (3) lead

to a bias against finding the results of the paper.

Note that the conclusions drawn in this paper are not based on a comparison of

actual default probabilities with those arising in the model. Therefore, it is not nec-

essary to assign an exact default probability to the distance to default measures used

in the analysis. In those instances where it is illustrative to associate a default prob-

ability with a given distance to default, I state the probabilities for the case in which
asset values follow a random walk and default can arise at any time during the one-

year horizon. This default probability obtains as 2U½�CC DTDt	. 7
I am not aware of a clear-cut description of the through-the-cycle method pub-

lished by the rating agencies themselves. I therefore build on the following character-

ization by Carey and Hrycay (2001): agencies assign ratings based on an estimate of

the borrower�s default probability in a stress scenario. This can be modeled by de-

composing the default probability pðDÞ into a conditional and a marginal compo-

nent: 8
6 Av

assum
7 Se
8 Fo

the str
pðDÞ ¼ pðDjSÞpðSÞ; ð4Þ
where pðSÞ is the probability that the stress scenario occurs and pðDjSÞ is the

probability of default in the stress scenario. Through-the-cycle ratings are based on

the latter. I complete the characterization of Carey and Hrycay (2001) by defining

the stress scenario. A natural definition seems to be that it represents a deviation

from the normal condition which is of a purely cyclical nature and which occurs with

a certain probability over a predefined horizon. Within the framework of the asset
value process introduced above, the normal condition is marked by the permanent

asset value x�t . Cyclical variations are due to the transitory component yt. Since
changes of y are normally distributed, the deviation from the normal condition is

equal to U�1½pðSÞ	 times the volatility of y over the horizon applied for the stress

scenario. Note that a borrower�s current condition may be worse than the stress

scenario. In such a case, relying on the stress scenario would be inconsistent with the

notion of stress because the stress scenario would correspond to an improvement

rather than a deterioration of credit quality. I therefore assume that agencies assign
ratings based on the minimum over the current distance to default and the distance

to default in the stress scenario. Formally, if both the stress scenario and the default
ailable solutions for the default probability within a first-passage-time model rest on the

ption of Brownian motion (see, for example, Zhou, 2001).

e Zhou (2001).

r simplicity, the formula neglects cases in which borrowers jump to default without passing through

ess scenario.
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probability in the stress scenario are defined over a one-year horizon, agency ratings

reflect the following stressed distance to default S DTD: 9
9 I h

of the

of defi
10 W

are rec

could

quality
S DTD

¼ min
x�t þ U�1½pðSÞ	rðytÞ � ð1� q12ÞU�1½pðSÞ	rðytÞ � d

rðxtÞ
;
xt � ð1� q12Þyt � d

rðxtÞ

� �

¼ min
x�t þ q12U�1½pðSÞ	rðytÞ � d

rðxtÞ
;
xt � ð1� q12Þyt � d

rðxtÞ

� �
: ð5Þ
As in the definition of the current-condition distance to default, I account for the

fact that the expected return on xt varies through the cycle; in the stress scenario, it is
given by �ð1� q12ÞU�1½pðSÞ	rðyÞ.

Rating agencies publish their credit assessments in the form of discrete grades. In

the paper, I nevertheless examine the dynamics of the distance to default instead of

those of a rating mapped thereon. Due to the discrete nature of ratings, rating

changes would be serially dependent even if the underlying state variable were not

(L€offler, 2002). An analysis of categorical ratings would thus obscure patterns pro-
duced by the rating methodology. I examine the distance to default rather than

the associated default probability because the non-linearity of the latter would com-

plicate the exposition and the presentation of results. Note, too, that some of the an-

alyses are based on an ordinal ranking of borrowers, in which case it is irrelevant

whether borrowers are ranked according to rating, distance to default, or default

probability. In other cases, the interpretation of the results implicitly assumes that

the rules for mapping distances to default into ratings are constant. 10

At this stage, it is appropriate to check whether the definition is consistent with
the agencies� descriptions of their rating methodology. Hilderman (1998) mentions

sensitivity to economic cycles as a rating criterion employed by Moody�s. In the

framework proposed here, sensitivity is measured by rðyÞ, the volatility of the cycli-
cal component. As is evident from (5), the stressed distance to default is lower for

larger rðyÞ, even holding the asset volatility rðxÞ fixed. (Note that q is positive while

U�1ðpðsÞÞ is negative.) The definition is thus consistent with cyclical borrowers re-

ceiving lower ratings. The following statement by Moody�s indicates that the

through-the-cycle method is particularly distinct for investment-grade issuers:
(. . .) Moody�s believes that giving only a modest weight to cyclical condi-
tions best serves the interest of the bulk of investors. Investment-grade is-

suers presumably possess sufficient financial strength to weather a
recession. Consequently, for investment grade issuers in particular,
ave examined an alternative definition according to which through-the-cycle ratings are a mapping

�permanent� distance to default, i.e. based on ðx�t � dÞ=rðxÞ. Using this alternative definition instead
nition (5) does not change the conclusions drawn from the analyses in Section 3.

hile there is evidence for shifts in rating standards (Blume et al., 1998), it is not apparent that they

urring, or follow predictable patterns. One possible reason for systematic shifts in rating standards

be changes in average credit quality. In the simulations conducted in this paper, average credit

is constant because innovations are independent across firms.
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Moody�s ratings do not automatically change with business cy-

cles. (Cantor and Fons, 1999, pp. 6–7)
As noted by Carey and Hrycay (2001), many non-investment grade issuers are al-

ready in a condition of stress, which blurs differences between the agencies� method
and the current-condition approach. In definition (5), this is accounted for by the

minimum condition which transforms through-the-cycle ratings to current-condition

ones. Since the current position in the cycle does not enter the definition other than

through the minimum condition, ratings ‘‘do not automatically change with business

cycles’’. Reasons for rating changes are mentioned in the following quote from Stan-
dard & Poor�s (2000):
Although exogenous factors (such as weakening terms of trade, higher

global interest rates, financial distress among external creditors, threat
of war) can limit policymakers� degrees of freedom, they usually do not

undermine a sovereign�s creditstanding and were not motivating factors

behind rating actions in 1999. When exogenous events do alter (normally

lower) a sovereign�s creditstanding, it is because either the policymakers�
capacity to respond was originally overestimated or the amplitude of the

commodity or interest rate cycle was underestimated (Standard & Poor�s,
2000, p. 8).
Overestimating the government�s capacity to respond corresponds to underesti-

mating the autocorrelation coefficient q, which determines the speed of adjustment

to the normal condition. Consistent with this description, the stressed distance to de-

fault decreases if q is increased. (The numerator in the first term of (5) is decreasing

in q, while the denominator is increasing in q). The amplitude of cycles corresponds
to rðyÞ, the volatility of the transitory component. As mentioned above, the stressed

distance to default decreases if rðyÞ goes up.
2.2. Separating permanent and temporary components

Both in the framework of this paper and in reality, 11 raters need to separate tran-

sitory and permanent components. Current-condition ratings require an estimate of

the transitory component yt to assess the conditional expected return while through-
the-cycle ratings require an estimate of the permanent asset value x�t . If the current
asset value xt is the only observable variable, the standard solution to these problems

is to apply a Kalman filter which produces a prediction of x�t and yt based on the ob-

served xt. For the process used here, the intuition behind the statistical procedure is

as follows. If the observed value xt deviates from its unconditional mean, deviations

are attributed to both permanent and transitory shocks. The precise split is deter-

mined by the relative variance of accumulated permanent and transitory shocks.

The longer deviations persist, and the lower the variance of transitory shocks is,
The greatest challenges facing analysts in rating a cyclical company are to capture its equilibrium

stinguish fundamental changes in credit quality from cyclical trends’’ (Fitch IBCA, 1999, p. 1).
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the less likely are deviations to be transitory. Formally, the dynamics of the observed

variable xt can be represented through the following system of equations (the expo-

sition closely follows Hamilton, 1994):
State equations :
x�t
yt

� �
¼ 1 0

0 q

� �
x�t�1
yt�1

� �
þ et

ut

� �
; ð6Þ
Observation equation : xt ¼ 1 1½ 	 x�t
yt

� �
: ð7Þ
Now define the following matrices:
nt ¼
x�t
yt

� �
; F ¼ 1 0

0 q

� �
; Q ¼ r2

e 0
0 r2

u

� �
; H ¼ 1

1

� �
: ð8Þ
The Kalman filter begins with n̂1j0, a forecast of n1. If there are no observations on
x prior to t ¼ 1, n̂1j0 will be the unconditional mean of n1. Having observed xt, the
estimate is updated with the following formula:
n̂tþ1jt ¼ F n̂tjt�1 þ FPtjt�1HðH 0Ptjt�1HÞ�1ðxt � H 0n̂tjt�1Þ; ð9Þ
where Ptjt�1 is the mean-squared error of n̂tjt�1. If, for example, the initial state of (6)

is known to the analyst, the first period mean-squared error will be equal to Q:
P1j0 ¼
r2

e 0

0 r2
u

� �
: ð10Þ
Before repeating the update in t þ 1, one has to compute the mean-squared error
of the updated prediction:
Ptþ1jt ¼ F ðPtjt�1 � Ptjt�1HðH 0Ptjt�1HÞ�1H 0Ptjt�1ÞF 0 þ Q: ð11Þ
The matrix Ptjt�1 is not a function of the realizations before t, but determined so-

lely by the parameters of the process. Finally, note from (9) that unexpected changes

in the predictions n̂ have a variance of
Varðn̂tþ1jt � F n̂tjt�1Þ ¼ VarðFPtþ1jtHðH 0Ptþ1jtHÞ�1ðxt � H 0n̂tjt�1ÞÞ: ð12Þ
Since H 0n̂tjt�1 is the forecast of xt made in t � 1, unexpected changes in the Kalman

estimates are solely driven by contemporaneous innovations in the observed vari-

able.

2.3. Parameterizing the model

The parameters of the state equation are determined by choosing values for the

autocorrelation parameter q, the conditional volatility of the observed asset value

xt, and the variance ratio of T -month asset returns relative to one-month asset re-

turns. This gives two equations (for the volatility and for the T -month variance ratio)
with two unknowns (r2

e and r2
u), which are solved numerically.
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In the remainder of the paper, I will illustrate the effects of rating through the cy-

cle with the help of examples. In these examples, the annual conditional volatility of

xt is set to 0.15. In fact, the precise value of this volatility does not influence the re-

sults because the analyses focus on changes in the distance to default rather than on

absolute default probabilities. The autocorrelation parameter q is set to 0.98 in most
cases, but variations will consider values of 0.99 and 0.96. The resulting half-life of

transitory shocks is approximately 2.9, 5.7 and 1.4 years for q equal to 0.98, 0.99 and

0.96, respectively. In their analysis of the dynamics of book leverage, Fama and

French (2002) estimate the annual adjustment to a target leverage ratio to be 10%

per annum for dividend paying firms and 18% for non-payers. With the framework

of this paper, a given annual rate of adjustment can be produced by setting the

monthly autocorrelation parameter q equal to (1) annual rate of adjustment)1=12.

The values obtained by Fama and French thus correspond to q equal to 0.991
and 0.984, respectively. As some characteristics of through-the-cycle ratings are

more pronounced if the pace of mean reversion is slow, the value of 0.98 is chosen

to be at the lower end of the empirical evidence to avoid overestimating the effects of

rating through the cycle.

For the variance ratio I choose four different values based on the five-year vari-

ance. The associated ratio is set to 0.6, 0.7, 0.8 or 0.9. I am not aware of empirical

estimates of the extent of mean reversion in the distance to default. For a sample of

US stocks, Poterba and Summers (1988) obtained an average five-year variance ratio
of 0.89 for individual excess equity returns. Since the standard error of this estimate

is fairly large (0.20) and, more importantly, the distance to default can be managed

by the firm, the chosen values for the five-year variance ratio seem to be representa-

tive. In the analyses of this paper, I will mostly assume that rating agencies know the

structure and parameters of the system (Eqs. (6)–(8)). 12 As to pðSÞ, the probability
that the stress scenario occurs, there is little information about which value provides

a representative description of the agencies� rating method. 13 I will set it equal to

0.05 in most cases, considering alternative values of 0.2 and 0.01. Both the stress sce-
nario and the distance to default in the stress scenario are defined over a one-year

horizon. Note that, from Eq. (5), the effects of applying a different horizon for the

stress scenario can be reproduced by applying a different pðSÞ.
To illustrate the effects of rating through the cycle, I resort to Monte Carlo sim-

ulations because the minimum condition in (5) makes it difficult to derive analytic

results. To mimic the real world, in which borrowers can be at different positions

in the cycle, and rating agencies have typically only imperfect knowledge on these

positions, I choose the following set-up for the simulations: The initial value of
the transitory component y is drawn from its unconditional distribution, which is

normal with mean zero and variance r2
u=ð1� q2Þ. The initial value of y is assumed

to be known to the raters; uncertainty about the position in the cycle is introduced
12 Unreported analyses show that conclusions do not change if the true variance ratio is set to 0.75, but

raters estimate it to be 0.6, 0.7, 0.8 or 0.9, each with probability 0.25.
13 I am only aware of the following statement by Fitch IBCA (1999, p. 2): ‘‘Fitch IBCA�s ratings reflect

the fundamentals of the company in the midpoint of its downturn and recovery.’’



Table 1

Parameter specifications

Model parameters Chosen parameter values

(alternative values separated by commas)

Variance ratio of five-year asset returns 0.6, 0.7, 0.8, 0.9, 1.0

Autocorrelation parameter q 0.96, 0.98, 0.99

Annual conditional asset volatility rðxÞ 0.15

Variance of permanent shocks r2
e Follows from variance ratio, q and rðxÞ

Variance of transitory shocks r2
u Follows from variance ratio, q and rðxÞ

Probability of stress scenario pðSÞ 0.01, 0.05a, 0.2

Initial value of the cyclical component y Drawn from unconditional distribution

Default threshold d 0

Initial Kalman prediction error 0

a Parameter chosen in the base case.
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by starting the analysis of rating dynamics in the fourth year of the simulated data

set. 14 The set-up thus corresponds to a situation in which raters knew the state of

the cycle three years ago, but then had to rely on the Kalman filter predictions.

The magnitude of the prediction errors varies with the parameters chosen for the

state equation. With a five-year variance ratio of 0.8 and an autocorrelation para-
meter of 0.98, for example, the mean-squared error of the Kalman prediction made

for y at the beginning of year four is 0.012, which is almost 50% of the unconditional

variance of y (0.025).
The description of the framework for the simulation experiments is now complete.

In the presentation of results, I will refer to the base case as comprising the following

assumptions: (i) the initial value of yt is drawn from its unconditional distribution,

and known to the rating agency; (ii) the analysis starts in the fourth year of each sim-

ulated asset value path; (iii) the probability for a stress scenario pðSÞ is 0.05; (iv) the
parameters of the asset value process are known to the rating agency; (v) the default

threshold d is zero. Table 1 provides a summary of the parameter specifications.

For the fourth year of the simulated data, Table 2 lists the conditional volatilities

of the observed asset value, the permanent asset value, and the estimated asset value

in the base case. The volatility of the Kalman prediction for the permanent asset va-

lue can be obtained by summing up the one-period variances given in (12). Intrigu-

ingly, the volatility of the estimated permanent asset value is lower than the volatility

of the permanent asset value itself. To see why this can be so, consider a period in
which the transitory component does not change, while the permanent does. The

Kalman filter will classify a part of this permanent shock as transitory, and the

change in the estimated permanent asset value will be smaller than the actual change.

Another way of explaining the picture is that permanent and transitory components

of the asset value are independent, whereas their estimates are, from Eq. (9), posi-

tively correlated. In addition, the sum of the estimates is equal to the sum of the true

values. Var½x̂�t þ ŷt	 plus a positive covariance term is therefore equal to
14 Conclusions do not change if the analysis starts at the beginning of year two.



Table 2

Conditional asset volatilities

Variance ratio of

five-year asset

returns

Autocorrelation

parameter q
Volatility

Observed asset

value xt
Permanent asset

value x�t

Estimated perma-

nent asset value x̂�t

1 – 0.150 0.150 0.150

0.9 0.98 0.150 0.134 0.130

0.8 0.98 0.150 0.114 0.103

0.7 0.98 0.150 0.085 0.066

0.6 0.98 0.150 0.031 0.010

0.8 0.99 0.150 0.067 0.038

0.8 0.96 0.150 0.131 0.129

706 G. L€offler / Journal of Banking & Finance 28 (2004) 695–720
Var½x�t þ yt	 ¼ Var½x�t 	 þ Var½yt	. The relation can only hold if the variances of the

estimates are smaller than the variances of the underlying variables.
3. Rating through the cycle as an explanation of stylized facts

3.1. The default prediction power of ratings is low

Agency ratings are often used to infer individual obligor default probabilities. Ex-

amples are portfolio credit risk models such as CreditMetrics (Gupton et al., 1997)

or the recent proposal of the Basel Committee on Banking Supervision (2001). Pro-

ponents of alternative rating methods point out that the predictive quality of agency

ratings can be substantially improved (cf. Kealhofer et al., 1998). The fact that

Moody�s has developed a statistical model for predicting short term default risk,

which complements the traditional through-the-cycle rating, indicates that even

the rating agencies share this view (cf. Sobehart et al., 2000).
By definition, through-the-cycle ratings are not based on the current default prob-

ability. This alone does not question their use for assessing default risk because the

correlation between through-the-cycle ratings and current-condition default proba-

bilities could still be very high. One can indeed construct simple examples in which

the correlation is perfect. Consider M borrowers, which in period t ¼ 0 are identical

in every respect. Now simulate individual asset value changes, which may be cross-

sectionally dependent or not. If, in the next period, borrowers are ordered according

to their default risk, current-condition and stressed distance to default produce iden-
tical orderings. The reason is that the estimates x̂� and ŷ�, which are alone responsible
for differences in default risk, are monotonically related to the observed asset value x
(see Eq. (9)).

In reality, the parameters of the asset value process will not be identical across

borrowers, and borrowers will be situated at different points in the cycle. In conse-

quence, through-the-cycle ratings will lose discriminatory power. While the default

probability depends on the current position in the cycle, through-the-cycle ratings

are only affected by sensitivity to cycles. In addition, once the extent of cyclicality
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differs between borrowers, the Kalman predictions of the permanent asset value will

differ even if the borrowers are initially at the same position in the cycle, and then

experience an identical change in their observed asset values. Consider two borrow-

ers whose variance ratios are 0.7 and 0.9, respectively. If the asset values of both bor-

rowers increase by 10%, the increase in the estimated permanent asset value will be
smaller for the borrower with the smaller variance ratio. This effect is also relevant

for the current-condition distance to default because it includes an estimate of the

cyclical component y. The magnitude of the effect, however, is smaller. From Eq.

(3), estimates of the transitory component yt are scaled down by ð1� q12Þ when en-

tering the definition of the distance to default. For q ¼ 0:98, this scaling factor is

0.22.

To gauge the magnitude of these effects, and to compare it to existing evidence on

the predictive quality of agency ratings, I perform the following experiment. I look at
a sample of 50,000 borrowers. In t ¼ 0, the asset value of each borrower is drawn

from a uniform distribution over the interval [0.15, 0.55]. For a variance ratio of

one, the continuous time default probabilities associated with these asset values

would be 31.73% (¼ 2U½�0:15=0:15	) and 0.025%, respectively. The range thus

roughly covers the default rates of issuers rated AAA to CCC by Standard & Poor�s.
As in the base case, the initial state of the cycle y0 is drawn from its unconditional

distribution. To account for the fact that the extent of cyclicality will differ across

borrowers in practice, I randomly assign each borrower a variance ratio of 0.6,
0.7, 0.8 or 0.9. Based on these initial conditions, asset values are simulated until

the end of year four. 15 Measures of the distance to default are determined using

the Kalman filter estimates of x� and y. I store the values of the current-condition
and the stressed distance to default from the end of year three, as well as a variable

indicating whether a default has occurred in year four; a default is taken to occur

when at least one of the monthly asset values simulated for year four is below zero. 16

The simulation is repeated 50,000 times. For the analysis, I take only those runs

where the asset value at the end of year three lies in the interval [0.15, 0.55]. Again,
this restriction is meant to bring the simulated sample in line with the data sets used

in empirical studies of rating performance. Following Sobehart et al. (2000), the pre-

dictive quality of ratings is measured through power curves, which are constructed as

follows. For a given rating system, borrowers are sorted according to their distance

to default. If the latter predicts defaults, a large fraction of defaults will occur among

the borrowers with a small distance to default. This relation can be checked by ex-

amining the percentage of defaulters whose distance to default is lower than the a
quantile of the population.
15 The impact of the variance ratio can be illustrated through the rank correlation coefficients between

current-condition and stressed distances to default at the end of year three. They amount to 0.73 (variance

ratio¼ 0.6), 0.85 (0.7), 0.94 (0.8), and 0.98 (0.9).
16 The discreteness of the simulation will lead to default rates which are lower than the ones that would

be observed in a continuous time setting. On the other hand, a continuous time analysis is unlikely to

provide a perfect description of a world in which, for example, payment obligations are due only in

discrete intervals.



Fig. 1. Simulated power curves for current-condition and through-the-cycle distance to default.
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Fig. 1 contains the simulated power curves for the current-condition and the

stressed distance to default. The current-condition approach is clearly superior in

predicting defaults. 68% of all defaults occur among the 20% of all borrowers with

the lowest current-condition distance to default; borrowers with a stressed distance
to default lower than the 20% quantile, by contrast, contain only 54% of all defaulted

borrowers. Kealhofer (2000) presents the results of a similar, empirical study that

compares the performance of S&P ratings with KMV default predictions. The

KMV default rate predictions, which are based on the Merton (1974) model, are es-

sentially current-condition. The figures in Kealhofer (2000) closely resemble the ones

obtained here. The 20% of all borrowers with the lowest KMV (S&P) rating contain

72% (61%) of all defaults.

To assess the impact of assumptions on the relative predictive power of internal
and external ratings, it is useful to condense the information contained in power

curves into a single figure. Sobehart et al. (2000) propose the following accuracy

ratio: for a given rating system, determine the area above the diagonal, and relate

it to the maximum area that can be enclosed above the diagonal. This maximum

would be achieved by a rating system in which no defaulting firm gets a better rating

than a non-defaulting firm. The accuracy ratio thus lies between zero and one, and

larger values indicate better predictive power. Sobehart et al. (2000) compute empir-

ical accuracy ratios for various quantitative default prediction models and obtain fig-
ures between 0.43 and 0.73.

Table 3 contains the accuracy for the assumptions described above as well as for

various modifications. They confirm the conclusion that current-condition ratings

are superior in predicting defaults. As should be expected, the advantage is smaller

if there is less cyclicality (the variance ratio is set to 0.8 or 0.9 instead of being 0.6,

0.7, 0.8 or 0.9), or cyclical shocks have a shorter half-life (the autocorrelation para-

meter is set to 0.96 instead of 0.98). The choice of the stress scenario probability pðSÞ



Table 3

Simulated accuracy ratiosa

Assumptions Simulated accuracy

ratios

Variance

ratios

Autocorre-

lation q
Asset value Stressed

default

probability

Probability

of stress

scenario

Current

condition

Through-

the-cycle

Assumptions as in Fig. 1

0.6–0.9 0.98 0.15–0.55 Unrestricted 0.05 0.72 0.54

Variations (bold face)

0.8–0.9 0.98 0.15–0.55 Unrestricted 0.05 0.71 0.60

0.6–0.9 0.96 0.15–0.55 Unrestricted 0.05 0.71 0.66

0.6–0.9 0.98 0.15–0.55 Unrestricted 0.01 0.72 0.51

0.6–0.9 0.98 0.15–0.55 �Investment

grade

0.05 0.63 0.36

0.6–0.9 0.98 0.15–0.55 �Specula-

tive grade

0.05 0.64 0.40

aHaving arranged default and rating data in a power curve (cf. Fig. 1) accuracy ratios relate the area

above the diagonal to the maximum area that can be enclosed above the diagonal. The larger the accuracy

ratio, the better the predictive power of a rating system.
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has little influence on the accuracy ratio of through-the-cycle ratings. Finally, I assess

the default prediction power of through-the-cycle ratings separately for borrowers

with a large or low stressed distance to default at the end of year three. 17 The

cut-off value is taken to be the stressed distance to default that obtains for a bor-

rower with a permanent asset value of 0.45 and a variance ratio of 0.75, i.e., the av-

erage across the four ratios chosen for the simulation. With an asset value of 0.45,

the continuous-time default probability is 0.27%. The cutoff value should thus pro-
vide a reasonable split into borrowers that would receive agency ratings in the invest-

ment grade and speculative grade domain, respectively. 18 The analysis does not

reveal any striking differences between the two domains, which does not mean that

one should not observe such differences in practice. Contrary to the assumptions

made here, borrowers with a relatively low permanent asset value could tend to be

more vulnerable to cycles, e.g. because market imperfections reduce the ability or

willingness to respond to adverse shocks if financial distress is imminent. In this case,

the predictive advantage of current-condition ratings would be higher for low-qual-
ity borrowers.

I also introduce cross-sectional correlation in asset value changes (not reported in

Table 3). For groups of 2500 borrowers, the correlation of both permanent and tran-

sitory shocks is set to 20%; the inter-group correlation is zero. The simulation thus

produces data sets similar to a 20-year rating history; it is repeated 100 times. Even in
17 As before, the asset value at the end of year three has to be in the interval [0.15, 0.55] for inclusion in

the analysis.
18 The average historical default rate of issuers rated BBB is 0.27% (Standard & Poor�s, 2002).
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the simulation where the through-the-cycle approach performs best relative to the

current-condition one, the former is clearly inferior. 19

Since the simulated figures closely mirror empirical ones, the latter cannot be in-

terpreted as evidence of informational inefficiency. Even if rating agencies efficiently

use available information and incorporate it timely into ratings, ratings will not op-
timally predict defaults. If one aims at obtaining estimates of current-condition de-

fault probabilities, agency ratings could, through their architecture, be inferior to

other rating systems.

3.2. Ratings are relatively stable

Kealhofer et al. (1998) and Carey and Hrycay (2001) find that agency ratings ex-

hibit a much larger stability than current-condition ratings. Kealhofer, Kwok and

Weng derive current-condition ratings from an application of the Merton (1974)

model and compare their stability with the one of S&P ratings. Carey and Hrycay

use a logit model to categorize issuers rated by Moody�s. Typically, 40–50% of cur-

rent-condition ratings remain stable over a one-year horizon, compared to 80–90%

in the case of agency ratings. Carey and Hrycay attribute this discrepancy to the

agencies� rating methodology, but they do not examine whether the potential effects
of rating through the cycle are large enough to account for the evidence. An alterna-

tive explanation could be that agencies consistently underreact to new information.

The following analysis quantifies the effects of rating through the cycle. As above,

the initial asset value of each borrower is drawn from a uniform distribution over the

interval [0.15, 0.55]; the initial state of the cycle y0 is drawn from its unconditional

distribution. Since the results depend heavily on the nature of cyclicality, I conduct

the simulation experiment separately for different assumptions about variance ratios

and autocorrelation coefficients. Based on 50,000 four year asset value paths for pa-
rameterization i, stability is assessed as follows. For borrowers not defaulted until

year three, I determine ai such that 50% of all borrowers whose current-condition

distance to default lies within the ai, and ð1� aiÞ quantiles at the end of year three

are situated in the same range at the end of year four. 20 In the next step, I examine

which fraction of borrowers fulfil this condition if the same ai is used to group bor-

rowers according to the stressed distance to default. A 50% stability of current-

condition ratings is thus used as a benchmark, and rating grades under the two

architectures are made comparable through the fraction of borrowers they comprise.
Table 4 summarizes the simulated one-year transition probabilities. Generally,

through-the-cycle ratings are more stable than current-condition ratings. With a

variance ratio of 0.7 and an autocorrelation parameter q ¼ 0:98, for example, rating
stability increases from 50% to 70.3% when moving from a current-condition rating
19 In this case, the 20% of borrowers with the lowest current-condition (stressed) distance to default

contain 66% (53%) of all defaulters.
20 The condition is not met if a borrower defaults within year four.



Table 4

Simulated one-year rating stability of through-the-cycle ratings if the stability of current-condition ratings

is 50%a

Assumptions for simulations Simulated rating stability

Variance ratio Autocorrelation parameter q

1 – 0.500

0.9 0.98 0.526

0.8 0.98 0.592

0.7 0.98 0.703

0.6 0.98 0.877

0.8 0.99 0.782

0.8 0.96 0.514

a Simulations are initialized by drawing the cyclical component from its unconditional distribution.

Rating stability is the probability of no rating changing in year four; the width of the rating grade is the

same as the one that makes the stability of current-condition ratings equal 50%. For the stressed distance

to default, the probability that the stress scenario occurs is set to 5%.
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to a through-the-cycle approach. The differences are more pronounced if the vari-

ance ratio is smaller, or the autocorrelation coefficient q is larger. With a variance

ratio of 0.6 or an autocorrelation parameter of 0.99, the magnitude of the differences

is close to the ones documented in empirical studies. The findings are robust with re-
spect to pðSÞ, the probability that the stress scenario occurs. If pðSÞ is taken to be

0.01 or 0.2 rather than 0.05, the stability of through-the-cycle ratings remains largely

unchanged. With a variance ratio of 0.7 and q ¼ 0:98, it amounts to 71.1%

(pðSÞ ¼ 0:01) and 66.3% (pðSÞ ¼ 0:2).
There are two explanations for the stability of through-the-cycle ratings. In the

current-condition approach, the volatility of the state variable is larger because it

is subject to both permanent and transitory shocks. Through-the-cycle ratings, by

contrast, are not affected by the current position in the cycle. The effect is corrobo-
rated by the fact that the permanent asset value is not known to the rating agency,

but has to be estimated. As shown above (see Table 2) the variance of Kalman filter

estimates can be significantly smaller than the variance of the predicted variable.

Since rating changes are triggered by a change in the estimated permanent asset

value, this leads to a further increase in stability when rating through the cycle.

To assess the magnitude of this effect, I calculated the rating stability under the as-

sumption that the permanent asset value is observable. With a variance ratio of 0.7

and q ¼ 0:98, stability is 63.3% instead of 70.3%.
Contrary to what is observed empirically, the simulations do not produce a rat-

ing stability above 90%. A possible explanation for this discrepancy is that the

through-the-cycle approach is not the only mechanism that reduces the volatility

of agency ratings. Rating agencies suppress rating changes when they are likely

‘‘to be reversed within a relatively short period of time’’ (Cantor, 2001, p. 175).

Though related, the two features are distinct. The latter is primarily due to

the discrete nature of ratings (see L€offler, 2002), which is not modeled in this

paper.
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3.3. Rating changes are predictable

Empirical studies of rating changes have documented a significant positive auto-

correlation (Altman and Kao, 1992; Lando and Skødeberg, 2002). A partial expla-

nation for this phenomenon could be that rating agencies ‘‘dole out the bad news in
small doses rather than savaging the bond issuer – who is, after all, their customer –

all in one go’’ (Economist, December 13, 1997, p. 70). Serial correlation might also

be due to horizon effects. Consider a firm which gradually expands into a new, risky

business segment, repeatedly issuing new debt to finance necessary investments. Over

time, the default probability will rise. Even if the rating analyst perfectly predicts this

development, she will not completely incorporate it in the current rating if the rating

horizon is shorter than the time span in which the firm�s restructuring is completed.
Rating changes will then exhibit positive autocorrelation.

Both effects are at work regardless of the rating methodology chosen, even though

their magnitude is likely to be different. Gradualism in negative rating changes is

likely to be less visible to uninformed outsiders when rating through the cycle. As

the stressed distance to default can only be estimated with noise, not reacting to pub-

licly available negative information can be justified by classifying the shock as tran-

sitory.

Since the magnitude of such effects is difficult to assess, I turn to the question of

whether the through-the-cycle approach itself can produce serially correlated rating
changes. If (i) the Kalman filter is used to infer the stressed distance to default, (ii)

the parameters are specified correctly, and (iii) innovations are serially independent

and identically distributed, the answer is no within the framework of this paper. The

Kalman filter yields the least-squares estimator of the permanent asset value. It is

thus not possible to explain future changes in the estimate using past data. If it were,

the Kalman estimate would fail to be efficient. This non-predictability result contin-

ues to hold if the information set used for testing predictability is expanded to in-

clude all observable information; such tests have been performed by Delianedis
and Geske (1999), who estimate default probabilities based on borrower fundamen-

tals, and show that rating changes lag changes in the estimated default risk. In the

model, the only observable variable is the asset value itself; due to the efficiency of

the Kalman filter, this variable cannot be used to predict future changes in the Kal-

man estimates.

This statement holds for the Kalman estimate as such, and under the assumptions

made in the base case. It requires several modifications.
3.3.1. The current-condition component in through-the-cycle ratings

Due to mean reversion, changes in the observed asset value are negatively auto-

correlated, and so are changes in the current-condition distance to default, which

is driven by the observed asset value. 21 Since the stressed distance to default can,
21 The current-condition distance to default accounts only for the one-year effects of mean reversion,

not the long-term ones.
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through the minimum condition modeled in (5), turn into a current-condition one,

one might therefore detect negative serial correlation in a sample of through-the-cy-

cle ratings. With the chosen parameterizations this effect is visible, but small. Using a

sample simulated within the base case setting (10,000 independent trials), I perform

the following regression:
Fig. 2

value (
S DTD48 � S DTD36 ¼ a þ bðS DTD36 � S DTD24Þ þ x: ð13Þ
One-year changes in the stressed distance to default are regressed on the lagged

one-year change in the stressed distance to default. With q ¼ 0:98, a variance ratio

of 0.8 leads to a b coefficient of )0.007, statistically insignificant (t-value¼)0.70) de-
spite the large sample size (10,000); choosing a variance ratio of 0.7 produces a co-

efficient of )0.03 (t-value¼)2.94).
3.3.2. Dependencies beyond autocorrelation

Another modification extends the traditional notion of predictability. If changes

in the distance to default are regressed on contemporaneous observables and the

lagged rating changes, the lagged rating changes might be significant even if there
is no simple autocorrelation. The intuition for this pattern is as follows: if the asset

value experiences a permanent shock in one period, and stays constant at the new

level in subsequent periods, the Kalman filter will classify the shock only gradually

as permanent. Fig. 2 shows such an adjustment path. With a variance-ratio of 0.7

and q ¼ 0:98 it takes more than four years until 50% of the shock are classified as

permanent. Empirically, the gradual processing of a permanent shock can be re-

vealed by controlling for new information as is done in a regression.

Such dependencies are also evident from an inspection of the Kalman equations.
First differencing Eq. (9) and using the shortcut Kt ¼ FPtjt�1HðH 0Ptjt�1HÞ�1 yields
. Kalman estimate of the permanent asset value following a one-time shock to the observed asset

variance ratio¼ 0.7, autocorrelation parameter q ¼ 0:98).



Table

Regres

Assu

Var

five-

retu

Pan

0.9

0.8

0.7

0.6

0.8

0.8

Pan

0.9

0.8

0.7

0.6

0.8

0.8

aUs

contem

in stre

scenar

714 G. L€offler / Journal of Banking & Finance 28 (2004) 695–720
n̂tþ1jt � n̂tjt�1 ¼ F n̂tjt�1 þ Ktðxt � H 0n̂tjt�1Þ � F n̂t�1jt�2 � Kt�1ðxt�1 � H 0n̂t�1jt�2Þ
¼ Ktxt � Kt�1xt�1 þ ðF � KtH 0Þn̂tjt�1 � ðF � Kt�1H 0Þn̂t�1jt�2: ð14Þ
As can be seen from Eq. (14), current changes in the Kalman prediction depend not

only on changes in the observed asset value, but also on the lagged Kalman pre-

dictions.

I conduct Monte Carlo simulations to assess the explanatory power of lagged

changes in the stressed distance to default. I simulate 10,000 independent asset value
paths, setting the variance ratio to 0.6, 0.7, 0.8, or 0.9, respectively. With the data

from these random samples, I perform the following regressions:
S DTD48 � S DTD36 ¼ a þ b1ðCC DTD48 � CC DTD36Þ
þ b2ðS DTD36 � S DTD24Þ þ x: ð15Þ
One-year changes in the stressed distance to default are regressed on the con-
temporaneous change in the current-condition distance to default and the lagged

one-year change in the stressed distance to default. Abstracting from the fact that

agencies report only ratings, not the underlying distance to default, this is a regres-

sion an outside observer of rating changes might perform in order to test whether the

rating agency, beside incorporating new information, also makes up for information

previously neglected. Panel A of Table 5 reports the estimated coefficients. The as-
5

sion analysis of simulated changes in the stressed distance to defaulta

mptions for simulations Regression results

iance ratio of

year asset

rns

Autocorrelation

parameter q
b̂1 b̂2 R2

el A: all observations

0.98 0.883 0.022 0.995

0.98 0.732 0.047 0.984

0.98 0.526 0.058 0.921

0.98 0.211 )0.121 0.395

0.99 0.419 )0.028 0.712

0.96 0.894 0.043 0.997

el B: only observations with stressed distance to default< current-condition distance to default

0.98 0.881 0.026 0.996

0.98 0.718 0.059 0.991

0.98 0.477 0.106 0.979

0.98 0.082 0.169 0.957

0.99 0.268 0.067 0.981

0.96 0.894 0.044 0.997

ing a simulated sample, one-year changes in the stressed distance to default are regressed on the

poraneous change in the current-condition distance to default (b1), and the lagged one-year change

ssed distance to default (b2). For the stressed distance to default, the probability that the stress

io occurs is set to 5%.
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sumed autocorrelation parameter q is 0.98. Simulation errors are negligible as the

t-statistics are mostly above 20.

The estimated coefficients b̂2 show that changes in the stressed distance to default

are explained by lagged values of the same variable provided new information is con-

trolled for. With a variance ratio of 0.7, for example, a 10% change in the stressed
distance to default produces a 0.58% change in the following year, ceteris paribus.

For some of the parameter combinations, the effect is negative. This is due to situ-

ations in which the stressed distance to default turns into a current-condition one.

I therefore run the regressions (15) separately for those observations where the min-

imum condition in (5) does not bite at any of the dates t ¼ 24, 36 and 48. The results

are also reported in Table 5, Panel B. The influence of the lagged stressed distance is

generally larger, and always positive. With a variance ratio of 0.6, a 10% change in

the stressed distance to default leads to a 1.69% change in the following year.
It is difficult to gauge the magnitude of the effects, especially because there are no

comparable empirical studies. Even if the effects were too small to become visible in a

statistical analysis of rating dynamics, one should still be careful when interpreting

anecdotal evidence. An observation like ‘‘The agencies are continuing to downgrade

Japanese financial institutions for reasons that have been widely commented upon

for months, if not years’’ (Economist, December 13, 1997, p. 71), is not necessarily

evidence of informational inefficiency. If a downgrade is followed by another down-

grade, it can well be that the two changes go back to a single shock. The second
downgrade could occur because the rating agency learns that it underestimated

the persistence of the shock. In the presence of uncertainty about the nature of

shocks, such learning is not in itself a sign of informational efficiency. Also, in order

for such learning to occur, it is not necessary that the initial shock is corroborated by

new developments pointing in the same direction. Even if overall conditions do not

change after the shock, it will increasingly be classified as permanent. One single

event can underlie a series of rating changes, and rating agencies explaining their rat-

ing decisions might well cite the same reasons again and again.

3.3.3. Estimation errors

So far, I have assumed that rating agencies know the parameters of the asset value

process. This assumption is likely to be unrealistic. Estimates of long-term dynamics
are imprecise even if the relevant variables are observed over a period of 50 years or

more (see Campbell et al., 1997). The estimation problem is aggravated because pa-

rameters will typically not be stationary. A change in a firm�s financing strategy or its
business activities can change both the speed of adjustment and the magnitude of cy-

clical shocks.

The likely magnitude of estimation errors is difficult to assess. Thus, I only present

an example which illustrates their potential effects. I examine a case in which the rat-

ing agency misestimates the average degree of cyclicality. Due to cross-sectional cor-
relation of shocks as well as changes in corporate financial strategy, estimation errors

are unlikely to cancel out across borrowers. Assume that the rating agency uses an

aggregate time series, say a stock market index, to estimate the five-year-variance

ratio of asset values. If the data covers 50 years of monthly observations, and the
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rating agency employs the estimator in Campbell et al. (1997, p. 52), the asymptotic

standard error of the estimate is 0.36.

Now assume that the true five-year variance ratio is 0.9, whereas the agency has

estimated it to be 0.7. The estimate is less than one standard error away from the true

value, but the error can have significant consequences. For a sample of 10,000 issu-
ers, I simulate independent four-year asset value paths with a variance-ratio of 0.9.

The stressed distance to default is estimated through the Kalman filter, assuming the

five-year variance ratio to be 0.7. With the simulated data, I run the following regres-

sion:
22 If
S DTD48 � S DTD36 ¼ a þ bðS DTD36 � S DTD24Þ þ x: ð16Þ
The estimated coefficient b is 0.06 (t-value¼ 6.05), revealing positive autocorrela-
tion. In the example, the rating agency underestimates the magnitude of permanent

shocks. On average, deviations will persist longer than expected, and the agency will

gradually adjust its estimates in the same direction as previous changes. 22 Regress-

ing the stressed distance to default on the lagged current-condition distance to de-

fault produces similar results.

The results are potentially relevant for the design and interpretation of statistical

tests. Consider the study by Delianedis and Geske (1999). Using 10 years of data

from 1987 to 1996, the authors show that rating changes lag changes in estimated
current-condition default probabilities. Their significance tests assume independent

observations. The validity of such an assumption should be checked. Rating agencies

who efficiently use available information could still misestimate the average degree of

cyclicality over a period of several years, leading to predictability in rating changes.

Note that similar problems arise if the rationality of macroeconomic forecasts is

tested for a small number of years, and errors in the forecasters� models cannot be
ruled out (see, for example, Batchelor and Dua, 1991).
3.4. Some rating changes are unrelated to new information

While rating agencies are typically criticized for being predictable and conserva-

tive in their actions, sometimes rating changes are also regarded as unwarranted
or excessive. In 1997 for example, the sharp downgrade of several east Asian coun-

tries puzzled some observers (cf. IMF, 1999, S.207). Within the framework of this

paper, adjustments that are seemingly unrelated to news can be explained as follows:

there may be information events that have only a small impact on current-condition

default risk, but that are highly relevant for separating permanent and transitory

components. If the new information necessitates a change in the estimate of perma-

nent components, agency ratings may react strongly even though the current-condi-

tion default risk, on which outside observers often focus, remains largely unaffected.
Such information can work in two ways. First, it can cause raters to alter their

estimates of the parameters of the asset value process. A firm�s announcement that
the agency overestimated the magnitude of permanent shocks, serial correlation would be negative.



Fig. 3. Mean-squared error of the estimated permanent asset value relative to the one-year variance of the

permanent asset value (autocorrelation parameter q ¼ 0:98).
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it will take longer than expected to bring leverage down to the target level would be

one example; another is given in the quote from Standard & Poor�s discussed in Sec-
tion 2. Second, there may be concrete information on the current position in the cy-

cle. Consider a firm which experiences a decrease in sales during a recession. Rating
analysts then have to assess whether the decrease is cyclical, or due to permanent

structural changes which coincided with the recession. Often, information necessary

for such an assessment will only be revealed through time, 23 but certain firm an-

nouncements or actions (e.g. closing down production facilities) could reveal the na-

ture of the shock.

The potential impact of the latter type of information can be gauged by examining

the mean-squared error of the Kalman filter prediction. If there is information that

allows to identify permanent and transitory components, previous estimates will be
adjusted, and the average magnitude of adjustments will be related to the mean-

squared error of the estimates. Whether outside observers consider adjustments to

be large depends on the normal degree of variability. I thus examine the ratio of

the mean-squared error of the predicted permanent asset value to the one-year vari-

ance of the permanent asset value, MSEðx̂�t Þ=VARðx�t � x�t�12Þ. This is done for four
variance ratios, and assuming the forecast error to be zero in t ¼ 0. The autocorre-

lation parameter q is set to 0.98.

Fig. 3 depicts the evolution of the ratio over time. If transitory effects are large
(variance ratio¼ 0.6 or 0.7), it takes less than 18 months until the mean-squared

error is larger than the annual variance of the underlying variable. That is, if rat-

ers were to learn the true permanent asset value after 18 months during which

they based their ratings on estimates, the average magnitude of the ensuing rating
23 Cf. Fitch IBCA (1999, p. 3): ‘‘(. . .) structural changes occur over long periods and are sometimes

difficult to pinpoint until they are well advanced.’’
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adjustment would be similar to the one brought about by one year�s innovations in
the state variable. For higher variance ratios, the mean-squared error can still

amount to more than 50% of the annual variance of permanent effects. Thus, the po-

tential for extreme rating changes that seem unwarranted by changes in current-con-

dition default risk is large.
4. Summary and conclusion

The aim of this paper was to contribute to a better understanding of the rating

methodology employed by rating agencies such as Moody�s or Standard & Poor�s.
Using a structural model of default, I derived predictions about rating characteristics

if ratings are meant to look �through the cycle� as opposed to being based on the bor-
rowers� current condition. I assumed that default risk is subject to both permanent

and transitory shocks, and that rating agencies focus on the default probability in

a stress scenario whose reference point is the permanent credit quality of a borrower.

This necessitates a separation of permanent and transitory components. Within the

model, the optimal way for doing this is the Kalman filter.

The analysis showed that empirical irregularities of agency ratings could be a con-

sequence of the through-the-cycle method. Rating stability is significantly higher

than with a current-condition approach. Ratings are not perfectly correlated with ac-
tual default risk, and they are correlated with past rating changes provided contem-

poraneous information is controlled for. Predictability in the usual sense can stem

from errors in assessing the degree of cyclicality. The empirical evidence on ratings

should therefore be interpreted with care. Apparent shortcomings of agency ratings

might well be inherent to the rating method. Rating through-the-cycle does not

per se lead to predictability of the type tested by Altman and Kao (1992), Lando

and Skødeberg (2002), and Delianedis and Geske (1999). However, statistical tests

of predictability should not presuppose independent observations across borrowers
and time. Rating agencies use one method for rating many borrowers, and it may

take considerable time until errors in the application of this method become evident

to the raters.

Additional research could examine the pros and cons of rating through the cycle

from the perspective of lenders, borrowers and regulators. In contrast to the

through-the-cycle approach, assessing default risk based on the borrowers� current
condition usually does not involve an analysis of long-term default risk dynamics. 24

Since prices of risky debt are affected by mean reversion (cf. Collin-Dufresne and
Goldstein, 2001), agency ratings can contain valuable information beyond the one

contained in current-condition ratings. This is not so much an intrinsic advantage

of the through-the-cycle approach as a shortcoming of existing current-condition

approaches. Under a current-condition architecture, the information on long-term
24 The default rate model used by KMV, for example, does not account for differences in mean

reversion across firms.
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dynamics could be conveyed through a term-structure of ratings. If lenders prefer to

base their decisions on a single rating, however, adopting a through-the-cycle ap-

proach may help to efficiently summarize the relevant information.

The Basel Committee on Banking Supervision (2001) has proposed to tie bank

capital requirements closer to default risk. This poses the question whether banks
should measure individual credit risk with a through-the-cycle or a current-condition

approach. Even though through-the-cycle ratings are incomplete measures of short-

term default term risk, they need not be inferior for the purpose of bank regulation.

Among others, Estrella (2001) and Catarineu-Rabell et al. (2002) argue that regula-

tors should avoid procyclicality in capital requirements. Relying on through-the-

cycle ratings would be one way of achieving this objective.
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